Markscheme

November 2017

Biology

Higher level

Paper 2

This markscheme is the property of the International Baccalaureate and must not be reproduced or distributed to any other person without the authorization of the IB Global Centre, Cardiff.

Section A

Question			Answers	Notes	Total
1.	a		erythrocyte percentage increased AND body mass reduced/smaller increase in mass \checkmark		1
1.	b		a. increases endurance «in relation to the control» \downarrow b. higher force/endurance at every testing time/throughout OR smaller decreases in force «over time» \downarrow c. the magnitude of the difference is similar throughout the five minutes experiment/testing \checkmark d. differences are «statistically» significant \checkmark e. endurance of control is «approximately» 35% versus endurance of hypoxia «approximately» 55% «after 5 minutes» \downarrow	Accept $\pm 5 \%$ for both percentages	2 max
1.	C		a. diaphragm more endurance/stronger/generates more force for more ventilation/inspiration \checkmark b. right ventricle mass increases to pump more blood \checkmark c. erythrocyte percentage increases to transport oxygen \checkmark d. less growth/body mass which reduces oxygen demand \checkmark	Reject "loss of body mass" The physiological reason is required for each mark	2 max
1.	d	i	a. hypoxia increases the concentration of sodium-potassium pumps \checkmark b. nitric oxide needed for/stimulates «production of» sodium-potassium pumps \checkmark c. nitric oxide synthase inhibitor reduces the concentration of pumps OR concentration of pumps reduced by inhibiting nitric oxide production \checkmark	Award up to [1] for a conclusion on lines labelled 1 and up to [1] for a conclusion on the lines labelled 2	2 max
1.	d	ii	a. resting potential restored faster \checkmark b. increases the «maximum» frequency/rate of contractions OR can contract again sooner \checkmark	Accept shorter refractory period for mpa Do not accept faster contraction/depolarization/ repolarization	1 max

(Question 1 continued)

Question			Answers	Notes	Total
1.	e	i	reduces «force of» twitch AND peak tetanic contraction \checkmark		1
	e	ii	a. decrease in volume/atrophy/loss of cells/less muscle fibres/less tissue in the diaphragm \checkmark b. SA to volume ratio increased to make oxygen uptake into muscle/cells faster \checkmark	Do not accept reduction in area of diaphragm	1 max
1.	f		a. not effective because body mass lost \checkmark b. effective because body mass still increases/rats still grow \checkmark c. not effective because contractions/force exerted by diaphragm decreases d. effective because more sodium-potassium pumps so more/faster rate of diaphragm/muscle contractions \downarrow e. effective because endurance of diaphragm increases \checkmark f. effective because mass of right ventricle increases \checkmark g. effective because erythrocyte percentage increases \checkmark	For each marking point the candidate must make it clear whether they are arguing for adaptation being effective or not. This can be done by giving the physiological benefit of a change, for example greater mass of right ventricle so more blood pumped.	3 max

(Question 1 continued)

Question			Answers	Notes	Total
1.	g		advantages: a. small size OR easy to look after in research labs \checkmark b. short lifespan OR study can extend over several generations \checkmark c. can be killed «to get experimental results» if benefits of research justify it \checkmark d. «mammalian» so similarities with humans \checkmark e. fewer ethical objections than if humans are used/not ethical to subject humans to hypoxia/does not cause harm to humans \checkmark disadvantages: f. ethical objections OR wrong to cause suffering to animals/rats \checkmark g. rat physiology/anatomy not same as human \checkmark	Accept any one of the advantages Accept any one of the disadvantages	2 max

Question			Answers	Notes	Total
2.	a		a. electron microscope has greater resolution/magnification \checkmark b. 70 nm is too small/viruses are too small to be viewed by a light microscope \checkmark		1 max
2.	b		a. viruses are not living \checkmark b. viruses lack metabolism/lack enzymes «for metabolism»/lack cell walls \downarrow c. antibiotics target metabolic «pathways»/cell wall production \checkmark	Accept cell wall structure affected	2 max
2.	c		produce/secrete antibodies \checkmark		1
2.	d	i	a. antigen injected into mouse/mammal/host \checkmark b. B cells/B lymphocytes/plasma cells «obtained/extracted from host» \downarrow c. fusion «of plasma cell» with myeloma cell/tumour cell \checkmark d. division «of hybridoma cells» to produce a clone \checkmark	Accept animal	2 max
2.	d	ii	produce monoclonal antibodies OR diagnosis of diseases/malaria/cancer/HIV OR treatment of rabies OR blood and tissue typing OR pregnancy testing OR targeting of cancer cells «with a chemotherapy drug» OR treatment of infection if too late for vaccination/successful immune response \checkmark	Only accept the first use of hybridoma cells given in the answer Not treatment of malaria	1

(continued...)
(Question 3 continued)

Question		Answers	Notes	Total
3.	C	a. secreted when blood/plasma is hypertonic/too concentrated/water content too low \checkmark b. makes walls of collecting duct/distal convoluted tubule «more» permeable to water \checkmark c. more aquaporins in membranes «of collecting duct cells» \downarrow d. more water reabsorbed from filtrate/from urine/more water returned to blood \checkmark e. small volume of concentrated urine excreted \downarrow		3 max

4.	a	i	Filicinophyta/Filicinophytes/Pteridophytes \checkmark	Accept Pteridophyta although it is now an invalid taxon Reject "ferns"	1
4.	a	ii	a. have roots stem and leaves \checkmark b. pinnate leaves/leaves divided «repeatedly» into leaflets \checkmark c. have vascular tissue/xylem and phloem \checkmark d. produce spores/sporangia OR no flowers/fruits/seeds \checkmark		2 max
4.	b		a. water is split/breaks \checkmark b. using energy from light \checkmark c. electrons «from photolysis» pass to photosystem II \checkmark d. oxygen is a «waste» product \checkmark e. hydrogen ions/protons are produced \checkmark	Allow answer given as an equation	3 max

Question		Answers	Notes	Total
5.	a	a. occurs during prophase I/during meiosis \checkmark b. homologous chromosomes form bivalents/pair up \checkmark c. breakage and rejoining of chromatids \checkmark d. exchange «of DNA/alleles» between non-sister chromatids/homologous chromosomes \checkmark		2 max
5.	b	a. «linked genes are» on the same chromosome \checkmark b. Mendel 's genes were on different chromosomes \checkmark c. linked genes are inherited together OR no independent assortment \checkmark d. «linked genes» only separated by crossing over OR fewer recombinants than with unlinked genes \checkmark	Reject sex-linkage	2

Section B

Clarity of communication: [1]

The candidate's answers are clear enough to be understood without re-reading. The candidate has answered the question succinctly with little or no repetition or irrelevant material.

| Question | | Answers | Notes | |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 6. | a | | $\begin{array}{l}\text { a. mitochondria and chloroplasts are similar to prokaryotes } \checkmark \\ \text { b. «host» cell took in another cell by endocytosis/by engulfing «in a vesicle» } \checkmark \\ \text { c. but did not digest the cell/kept the «ingested» cell alive } \\ \text { OR } \\ \text { symbiotic/mutualistic relationship «between engulfed and host cell» } \checkmark \\ \text { d. chloroplasts and mitochondria were once independent/free-living «organisms» } \checkmark \\ \text { e. DNA «loop» in chloroplast/mitochondrion } \checkmark \\ \text { f. division/binary fission of chloroplast/mitochondrion } \checkmark \\ \text { g. double membrane around chloroplast/mitochondrion } \checkmark \\ \text { h. 70s ribosomes «in chloroplast/mitochondrion» } \checkmark\end{array}$ | Allow "taking in" in place of "engulfing" |\(\left.\quad \begin{array}{l}Award up to [2] for evidence from

mpe to mph\end{array}\right]\)
(Question 6 continued)

	Question		Answers				Notes	Total

(Question 6 continued)

| Question | | Answers | Total |
| :--- | :--- | :--- | :--- | :---: | :---: |
| 6. | c | a. crop plants/domesticated animals/livestock produced by selective breeding \checkmark
 b. specific example of a domesticated animal/crop plant and the wild species from which it
 was developed
 OR
 specific example of a domesticated animal/crop plant and the features in it which have
 been improved «compared with the wild species» \checkmark | For example dogs have been
 developed from wolves |
| c. artificial selection/crossing selected varieties/eliminating undesirable varieties \checkmark | | | |
| d. «selective breeding/artificial selection can cause» significant/rapid change over time/from | | | |
| the original wild species \checkmark | | | |
| e. «changes due to selective breeding/artificial selection» shows natural selection can | | | |
| cause change/evolution «in a species» \checkmark | | | |

Question			Answers	Notes	Total
7.	a		a. at least one of the amino acid structures completely correct \checkmark b. peptide bond shown with $\mathrm{N}-\mathrm{C}$ and $\mathrm{C}=\mathrm{O}$ and $\mathrm{N}-\mathrm{H}$ correct \checkmark c. release of water clearly shown \checkmark		3
7.	b		a. DNA is transcribed AND mRNA is translated \checkmark b. transcription produces RNA AND translation produces polypeptide/protein \checkmark c. RNA polymerase used in only in transcription and ribosomes only in translation \checkmark d. transcription in the nucleus «of eukaryotes» and translation in the cytoplasm \checkmark e. tRNA needed for translation but not transcription \checkmark f. nucleotides linked in transcription and amino acids in translation OR sugar-phosphate/phosphodiester bonds in transcription and peptide bonds in translation \checkmark	Disallow the first mark, if a candidate gets transcription and translation the wrong way round, but allow marks after that up to [3 max]	4 max

(Question 7 continued)

Question			Answers	Notes	Total
7.	C		a. excreted as uric acid \checkmark b. excretion by Malpighian tubules \checkmark c. nitrogenous waste/ammonia «accumulates» in hemolymph \checkmark d. nitrogenous waste/ammonia absorbed by Malpighian tubules \checkmark e. ammonia converted to uric acid \downarrow f. conversion to uric acid requires energy/ATP \checkmark g. high solute concentration in Malpighian tubules OR active transport of ions $/ \mathrm{Na}^{+} / \mathrm{K}^{+}$into Malpighian tubules \checkmark h. water absorbed by osmosis flushes uric acid/nitrogenous waste to «hind» gut \checkmark i. water/ions reabsorbed from the feces and returned to hemolymph \checkmark j. uric acid precipitates/becomes solid/forms a paste so can pass out with little water \checkmark k. uric acid excreted/egested with the feces \checkmark I. water conservation/osmoregulation OR reduces mass of water «in body» \downarrow m . uric acid is non-toxic \checkmark		8 max

Question			Answers	Notes	Total
8.	a		a. radicle/embryo root shown tapering to a root tip \checkmark b. plumule/embryo shoot shown with embryonic leaves «in a dicot seed» OR plumule/embryo shoot shown tapering to a shoot tip «in a monocot seed» \checkmark c. seed coat/testa shown with a double line \checkmark d. cotyledon/endosperm shown as a large structure «for food storage» \downarrow e. embryo shown with both embryo root and shoot visible \checkmark	Accept any dicot or monocot seed eg: Award [1] for any of the structure clearly drawn and labelled Award mpe only if mpa and mpb have not been awarded and the labelling line points clearly to the plumule or radicle or both	3 max

(Question 8 continued)

Question			Answers	Notes	Total
8.	b		a. roots/root hairs absorb water \checkmark b. water is absorbed by osmosis \checkmark c. solute concentration inside the root is higher/water potential is lower «than in the soil» \checkmark d. due to active transport of ions/minerals into the root \checkmark e. transport of water in xylem vessels \checkmark f. flow/stream of water from roots to leaves \downarrow g. water movement in xylem due to pulling force/transpiration pull/suction/negative pressure potential h. cohesion/hydrogen bonds between water molecules «allows water to be pulled up in xylem» \checkmark i. transpiration in leaves generates tension/pulling forces/suction $\sqrt{ }$ j. evaporation of water from «leaf» cell walls \downarrow k. adhesion of water to «leaf» cell walls/cellulose creates tension «forces» \downarrow I. lignin in xylem walls/thickened xylem walls prevent collapse/resist tension \checkmark m . «movement of water in xylem is a» passive process \checkmark	Not adhesion to xylem walls in mpk and the adhesion must be linked to creating tension	8 max

(Question 8 continued)

Question		Answers	Total		
8.	c		a. formed from dead plant material/leaves/mosses/Sphagnum \checkmark b. formed in waterlogged sites/bogs/mires/swamps \checkmark c. where bacteria/fungi/saprotrophs are not active/are inhibited \checkmark d. organic matter not fully decomposed \checkmark e. «occurs» in acidic conditions \checkmark f. «occurs» in anaerobic conditions \checkmark g. «very» slow process/takes a long time \checkmark	4 max	Reject anaerobic respiration

